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Abstract —The robust stability of control systems where the 
controlled plant possesses dynamics is relevant today. This paper 
focuses on robust stability analysis of system with conditions of 
Lyapunov functions. We propose a method for construct the 
Lyapunov function for linear system, and then we apply 
geometric meaning to investigate the region of stability. In this 
paper we received the Lyapunov function, geometric 
interpretation, gradient vector components and superstability 
condition of system. We made comparative analysis of examples 
and for all the examples the stability conditions of the system 
executed. This work presents some theoretical fundamental and 
practical results assisting in analyzing of the behavior of control 
systems, meaning of robust radius of stability. The general 
problem of robust stability is defined and conditions is given. 

Keywords — Stability, Linear systems, Robust control, Control 
theory, Lyapunov function.  

I. INTRODUCTION  
The Robust analysis for linear systems is one of the 

actual direction today. Models with parametric uncertainty 
perform important function in both the theory and practical 
applications of robust control. They are described by the 
mathematical model containing parameters that are not 
precisely known, but the values are within given intervals. 
Such type of uncertainty can occur in the control of real 
processes, for example, as a result of modeling effort, 
inaccurate measuring (worn parts, weight change of the 
aircraft, temperature, fuel quality) or the influence of certain 
external conditions. 

The high research interest of robust stability analysis 
techniques was developed before. Nevertheless, many of them 
specialized for concrete systems of uncertainty structure. 

This paper provides a method aimed at usage of a 
universal approach in robust stability analysis for systems with 
parametric uncertainty. The present investigation method is 
based mainly on the combination of geometrical interpretation 
of Lyapunov function and the theory of robust stability of 
linear control systems, which is greatly beneficial especially 
for more complex tasks. 

An important task is to solve the problem of analysis of 
control systems and synthesis of control laws. All this ensures 
the best protection from high uncertainty of object properties. 

The considered problem is robust controllability of 
linear systems with parametric or non-parametric uncertainties 
[1,2]. Assuming that the linear system is controllable, a 
sufficient condition is proposed to preserve the properties of 
object (parameters of control systems) when system 
uncertainties are introduced.  The most important idea in the 
study of robust stability is to specify constraints for changes in 
control system parameters that preserve stability. 

The theory of robust control began in the late 1970s and 
early 1980s and soon developed a number of techniques for 
dealing with bounded system uncertainty. Today we see many 
works in this field [3-6].  

For the purpose of studying the system dynamics and 
their control, we considered models of observing input and 
output signals of the object and the representing its behavior in 
the state space as most suitable. 

This paper presents the approach of the construction of 
Lyapunov functions based on the geometric interpretation of 
the Lyapunov’s direct method (also called the second method 
of Lyapunov) [7] and on gradient of dynamical systems in the 
state space of systems. 

The content of this paper is organized in next way: In 
section 2, we introduce the basic equations of the model and 
their expanded form. In section 3 we received the Lyapunov 
function, geometric interpretation, gradient vector components 
and superstability condition of system. In section 4, we have 
considered the existence and robust stability, the radius of the 
robustness and considered a case study of the simulation 
practical example. Section 5 contains concluding remarks. 

 

II.    MATHEMATHICAL MODEL FORMULATION 
The control system is given by the linear equation. 
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The controller is described by the equation 

                              Kxu −=  (2) 
or      mixkxkxku niniii ,...,2,1,...2211 =−−−−=   
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Description of parameters  
 

nmnlmnnn RKRCRBRA ×××× ∈∈∈∈ ,,,  
 

Matrices of the object, control, output and coefficients 
of control system, nRtx ∈)( - state vector, mRtu ∈)( - vector 
control, lRty ∈)(  - vector output of the system.  

We can provide equation (1) in expanded form: 
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Let us denote BKAG −=  matrix of the closed system and the 
system (3) in matrix-vector form, we can write  
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Therefore equation (3) can be written as 
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III. THE GEOMETRIC APPROACH OF THE LYAPUNOV 
FUNCTION 

Stability is a fundamental notion in the qualitative 
theory of differential equations and is essential for many 
applications. In turn, Lyapunov functions are basic instrument 
for studying stability; however, there is no universal method 
for constructing Lyapunov functions. Nevertheless, in some 
special cases, a function can be constructed by applying 
special techniques. We construct the Lyapunov function for 
system and then use geometric interpretation to find the region 
of stability.  

The direct method is a great advantage in the case of 
nonlinear systems. The method of constructing a Lyapunov 
function for stability determination is called the second 
method of Lyapunov. We use the «second method of 
Lyapunov» or the «direct method» as applied to linear 
systems.   

Lyapunov's theorem has a simple geometric 
interpretation. The geometric meaning of a Lyapunov function 
used for determining the system stability around the zero 
equilibrium and can be used to solve the problem of 
constructing Lyapunov functions. 

The geometric identification of stable states is reduced 
to creating a family of closed surfaces that surround the zero 

equilibrium of coordinates. The system state moves across 
contour curves: each integrated curve can cross each of these 
surfaces. 

We suppose that there exists a positive definite 
function ),...,,( 21 nxxxV  for which ( )0<dtdV , and consider 
any integral curve of (3), coming out at the initial time of any 
point of the origin.  

If dtdV  is a function with negative definite 

( )0<dtdV , then every integral curve starting from a 
sufficiently small neighborhood of the origin, will be sure to 
cross each of the surfaces constCCtxtxtxV n == ,))(),..,(),(( 21

 
of the outside to the inside, as the CtxtxtxV n =))(),..,(),(( 21

 
function is continuously decreasing.  

But in this case the integral curves have to be infinitely 
close to the origin, i.e. unperturbed motion is asymptotically 
stable [2].  

Thus, from the geometric interpretation point of view 
the second method of Lyapunov, the study of stability is 
reduced to the construction of a family of closed surfaces 
surrounding the origin. As the integral curves have property to 
intersect each of these surfaces, then stability of the 
unperturbed motion will be set [2].  

Let us consider, that the expression 0)( <dtxdV
  means,that  
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x
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dt
xdV ,  

 
i.e. scalar product of the gradient vector Lyapunov 

functions )(xVgrad  by the velocity vector dtdx  for the 
asymptotic stability of the system must be less than zero.  

This condition will be true if the angle α  between the 
gradient of the Lyapunov function )(xVgrad  and the 
velocity vector dtdx  forms an obtuse angle 00 18090 ≤<α .  

The gradient vector of the Lyapunov function is always 
directed from the origin toward the highest growth of 
Lyapunov functions.  

Also note that, in the study of stability [1] the origin 
corresponds to the stationary states of the system or the set of 
the system. The state equation (1) or (4) shall be made in 
respect to deviations from the steady state 

( ))()( tXtXxxX ss −=∆= .  
Therefore the left side of (1) or (4), dtdx /  expresses the 

velocity vector changes and deviations. We can assume that 
the velocity vector of deviations submitted to the stability of a 
system to the origin. 
Components of the gradient vector Lyapunov functions in the 

opposite direction, but they are equal in absolute value. Then, 
if the Lyapunov function )(xV  is specified as a vector of 
functions ))(),...,(),(( 21 xVxVxVV n

 
then gradient vector 

Lyapunov function can be written as 
( ) .xBKAdtdxxV −−=−=∂∂ [7,8] 
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Vector components of the gradient of a potential 
function  ),...,( 1 nxxV  are given in the form of vector 
Lyapunov functions with components 
( )),...,,(),...,,...,,(),,...,,( 21212211 nnnn xxxVxxxVxxxV  we 
write in the form: 
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In this system by substituting values of the components of 

the velocity vector we get: 
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From here we can find the components of the gradient vector 
for the component vector functions 
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Total time derivative of the components of the vector 
Lyapunov function )(xVi

 given by the equation of motion (1) 
and (4) is determined by 
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From the expressions (8) that the total time derivative 

of the vector-Lyapunov  )(xVi
 functions in the performance of 

the initial assumptions resulting from the geometric 
interpretation of a theorem A.M. Lyapunov will be negative 
sign function.  This means that the conditions for asymptotic 
stability of the system will always be performed (4). 

Now, using components of the gradient vector we will 
restore components of the vector Lyapunov functions: 
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The positive definiteness of all components of the 

vector Lyapunov function will be expressed by 
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This condition characterized superstability of 

transposed matrix of a closed system [4]. 
 

IV. THE ROBUST STABILITY CONDITION AND RADIUS OF THE 
ROBUSTNESS  

Let us investigate the robust stability of the vector-
Lyapunov functions. Then let us transform the condition of 
robust stability of the components of the vector Lyapunov 
function. For this, we can turn to a parametric family of 
coefficients the vector-Lyapunov functions, such as the 
interval family, defined as [4]: 
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corresponds to a positive-definite Lyapunov functions, i.e. 
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Now, we require that the positivity condition coefficients 
stored for all functions of the family: 
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Clearly, this inequality holds for all admissible 
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In particular, if 1=ijm  (scale factors of a member of 

Lyapunov functions are the same), then 
 

)( 0
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Thus, the stability radius of interval family of positive 

definite functions is the smallest value of the coefficients of 
the vector Lyapunov functions. As an example, we consider 
the system described in state space. Let n = 2, m = 1, i.e., 
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With inequality [4] characteristic equation has roots 

with negative real parts. 
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We investigate the stability of the system using the idea 
of Lyapunov functions.  

Let us investigate the components of the gradient 
vector components vector functions ),( 211 xxV  and ),( 212 xxV : 
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We discover the total time derivative of the Lyapunov 

function by the formula (8): 
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The next step - discovering vector Lyapunov functions 
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Conditions for the stability of the system obtained in 

the form: 
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From this we can get a system of inequalities 
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Thus, from (9) and (10) we can determine the radius of 

robust stability of a second order system, if system parameters 
are uncertain [7,8]: 
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Then, as an example, we define the following initial 

conditions and find conditions for the stability of the system, 
the radius and transients. 

When the initial settings are follow: 
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In this case, the radius will be equal ( 3860.0* =γ ).  
The overall the transition process of the system shows on the 
Figure 1 

 
Fig. 1.The transition process, exp.1. 

 
The second case, when the initial settings are follow: 
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In this case, the radius will be equal ( 01.3* =γ ).  
 
The overall the transition process of the system shows on the 
Figure 2. 
 

 
Fig. 2.The transition process, exp.2. 

 
The third case, when the initial settings are follow: 
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In this case, the radius will be equal ( 032.1* =γ ).  

The overall the transition process of the system shows on the 
Figure 3. 
 

 
Fig. 3.The transition process, exp.3. 

 
For 4-d case, when the initial settings are follow: 
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In this case, the radius will be equal ( 032.1* =γ ). 
 
The overall the transition process of the system shows on the 
Figure 4. 
 

 
Fig. 4.The transition process, exp.4. 

 
For 5-d case, when the initial settings are follow: 
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In this case, the radius will be equal ( 032.1* =γ ). The overall 
the transition process of the system shows on the Figure 5. 
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Fig. 5.The transition process, exp.5. 

 
The complex analysis of examples we can see on Figure 6. 

For all the examples given initial values and the stability 
conditions of the system are executed. 

 

 
Fig. 6.The transition process, exp.3-4. 

 
V. CONCLUSION 

In our theory robust stability perform an important 
function in the theory of control of dynamic objects is [7,8]. 
The main point of robust stability study is to specify 
constraints on the change control system parameters that 
preserve stability. These limits are determined by the region of 
stability in an uncertain and are selected, i.e. changing 
parameters [9,10,11,12]. In this paper we propose an approach 
of the construction of a Lyapunov function in the form of a 
vector function in way that it is equal to the gradient of the 
components of the velocity vector (right side of the equation 
of state), but with the negative sign.  

Study of the robust stability of the system is based on 
the idea of a direct method A.M. Lyapunov. The region of 
stability is obtained in the form of simple inequalities for 
uncertain parameters control object and selected regulator 
properties. A new theoretical method of robust stability is 
proposed for linear systems with uncertain valued parameters. 
This method is an extension of the notion of stability where 
the Lyapunov function is replaced by a geometric 
interpretation of the Lyapunov function with dependence on 
the uncertain parameters [11,12,13]. The radius of stability 
coefficients interval family of positive definite functions is 
equal to the smallest value of the coefficients of the vector 
Lyapunov functions.  Theoretical results obtained in this paper 
are an important contribution to the theory of stability, to the 

theory of robust stability of linear control systems. Thus, for a 
wide class of systems, we believe the theory is sufficiently 
well  developed that work can begin on developing efficient 
approach to aid control engineers in incorporating the 
parametric approach into their analysis  and design toolboxes. 
The practical importance of these results should motivate new 
theoretical studies on typical application techniques, 
clarification area of the robust control and stability [13]. 

Finally, this is the main results that theoretical 
approaches represent the most promising direction. These 
studies are especially important for the designing more 
effective control systems. 
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